Variations of primeness and factorization of ideals in Leavitt path algebras
نویسندگان
چکیده
In this paper we describe three different variations of prime ideals: strongly irreducible ideals, ideals and insulated in the context Leavitt path algebras. We give necessary sufficient conditions under which a proper ideal algebra L is product as well an intersection finitely many these types ideals. Such factorizations, when they are irredundant, shown to be unique except for order factors. also characterize algebras every admits such factorizations one special type
منابع مشابه
Algebras of Quotients of Leavitt Path Algebras
We start this paper by showing that the Leavitt path algebra of a (row-finite) graph is an algebra of quotients of the corresponding path algebra. The path algebra is semiprime if and only if whenever there is a path connecting two vertices, there is another one in the opposite direction. Semiprimeness is studied because, for acyclic graphs, the Leavitt path algebra is a Fountain-Gould algebra ...
متن کاملWeakly Noetherian Leavitt Path Algebras
We study row-finite Leavitt path algebras. We characterize the row-finite graphs E for which the Leavitt path algebra is weakly Noetherian. Our main result is that a Leavitt path algebra is weakly Noetherian if and only if there is ascending chain condition on the hereditary and saturated closures of the subsets of the vertices of the graph E.
متن کاملThe Leavitt path algebras of arbitrary graphs
We extend the notion of the Leavitt path algebra of a graph E to include all directed graphs. We show how various ring-theoretic properties of these more general structures relate to the corresponding properties of Leavitt path algebras of row-finite graphs. Specifically, we identify those graphs for which the corresponding Leavitt path algebra is simple; purely infinite simple; exchange; and s...
متن کاملStable Rank of Leavitt Path Algebras
We characterize the values of the stable rank for Leavitt path algebras, by giving concrete criteria in terms of properties of the
متن کاملTensor Products of Leavitt Path Algebras
We compute the Hochschild homology of Leavitt path algebras over a field k. As an application, we show that L2 and L2 ⊗ L2 have different Hochschild homologies, and so they are not Morita equivalent; in particular they are not isomorphic. Similarly, L∞ and L∞ ⊗ L∞ are distinguished by their Hochschild homologies and so they are not Morita equivalent either. By contrast, we show that K-theory ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Algebra
سال: 2021
ISSN: ['1532-4125', '0092-7872']
DOI: https://doi.org/10.1080/00927872.2021.1881790